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ABSTRACT 

An algorithmic information theoretic method is presented for 
object-level summarization of meaningful changes in image 
sequences. Object extraction and tracking data are represented as 
an attributed tracking graph (ATG), whose connected subgraphs 
are compared using an adaptive information distance measure, 
aided by a closed-form multi-dimensional quantization. The 
summary is the clustering result and feature subset that maximize 
the gap statistic. The notion of meaningful summarization is 
captured by using the gap statistic to estimate the randomness 
deficiency from algorithmic statistics. When applied to movies of 
cultured neural progenitor cells, it correctly distinguished neurons 
from progenitors without requiring the use of a fixative stain. 
When analyzing intra-cellular molecular transport in cultured 
neurons undergoing axon specification, it automatically confirmed 
the role of kinesins in axon specification. Finally, it was able to 
differentiate wild type from genetically modified thymocyte cells. 

Index Terms: Algorithmic information theory, Algorithmic 
statistics, Information distance, Gap statistic, Clustering. 
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1. INTRODUCTION 
Given a set of image sequences, we propose unsupervised 
algorithms that can compute a concise and meaningful summary of 
the changes occurring within and across the image sequences. 
These two terms are defined in the sense of algorithmic 
information theory [1-3] and algorithmic statistics [4-6]. These are 
non-probabilistic approaches that can quantify any and all 
relationships between individual digital objects (algorithmic 
information theory) and between a specific digital object and a 
model (algorithmic statistics) more precisely than classical 
(probabilistic) information theory and statistics. Unlike Shannon’s 
entropy that describes an ensemble of objects [7], algorithmic 
information theory is concerned with absolute information content 
in individual objects. Importantly, these approaches allow us to 
capture the notion of a concise and meaningful summary of the 
changes within and across image sequences. 
     The idea of object-level change description is not new. An 
extensive body of literature exists in the area of video surveillance. 
Al-Kofahi et al. described changes in cultured neurons [8], and 
progenitor-cell cultures [9]. Iyer et al. have described diverse 
changes in human retinas imaged over time [10]. While this list is 
by no means comprehensive, it is sufficient to illustrate an 
important point – most systems described to date are specialized to 
their respective application domains. Stauffer and Grimson [11] 

presented a system that establishes patterns of activity from 
tracking results using a codebook of representations to classify 
higher level behaviors from tracking. The goal of their system is to 
classify an object given one or more observations. Medioni et al. 
[12] proposed a system to generate scenarios from tracking data. 
They use an attributed graph to represent object, feature and 
tracking information. Their goal is to generate application specific, 
AI driven scenarios, e.g. “the car is avoiding the checkpoint”.  

2. OVERVIEW OF METHOD 
Our method proceeds as follows: 

1. Given a set of image sequences, run application-specific 
automated object extraction and tracking algorithms. 

2. Create a data structure named the attributed tracking graph 
(ATG) bringing together objects extracted from the image 
sequence(s), their features, and time courses. Specific a priori 
domain knowledge, if available, can be included by an 
appropriate choice of feature or object subsets.  

3. The following steps are repeated over the raw ATG without 
quantization, and then with varying degrees of quantization: 
a) The normalized adaptive information distance (NAID) is 

used to calculate pair-wise distances matrix. 
b) Gap spectral clustering is performed on this distance 

matrix, and the gap value is computed and stored.  
4. The clustering with the highest gap value, together with the 

corresponding feature subset is output as the summary.  
2.1 The Normalized Adaptive Information Distance (NAID) 
Bennett et al. [1] described the “absolute information distance 
metric” ),( yxE between two objects (represented as binary 
strings) x and y , as follows: 
 )}|(),|(max{),( xyKyxKyxE , (1) 
where )|( yxK  is the conditional Kolmogorov complexity of a 
string x  relative to another string y  that is defined as the length 
of the shortest program to compute x  if the string y is provided to 
the universal computer as an auxiliary input. Importantly, the 
lengths of the two strings need not be the same. Although many 
distances are innately absolute, the problem of interest to us only 
requires a relative or normalized distance metric. This requirement 
is met by the universal similarity metric defined by Li et al. [3], 
known as the normalized information distance (NID): 

 
)}(),(max{

)}|(),|(max{),(
yKxK

xyKyxKyxNID . (2) 

     The NID is symmetric, and assumes a value 0 when the two 
objects are maximally similar or identical and 1 when they are 
maximally dissimilar. The above measure has been shown to be 
“universal” in the sense that ),( yxNID  is at least as small as any 
normalized distance between objects x  and y  [1]. By itself, 

),( yxNID is a theoretical concept with little practical value due to 
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the non-computability of its Kolmogorov complexity based terms. 
     In [2], Cilibrasi and Vitányi present a new method for 
approximating the NID using a lossless compression program. The 
Normalized Compression Distance (NCD) is computed using  
lossless compression programs such as zip, gzip, bzip2, etc. 
The NCD exploits the ability of these algorithms to identify 
patterns in the data. The NCD is computed as follows. Let )(xC  
denote the size in bytes of the compressed version of string x , and 

);( yxC  the size of the compressed version of the concatenation 
of x and y . 

 ))(),(max(
))(),(min();(),(

yCxC
yCxCyxCyxNCD

. (3) 
     There are no parameters needed to compute the NCD, except 
for the choice of compression algorithm. As shown by Vitanyi et 
al., the choice of compression algorithm has a negligible impact on 
the final analysis [7]. The strings being compared do not even have 
to be of the same size or dimension. Practically speaking, the NCD 
can be computed for any set of image sequences in much the same 
manner. All results for this paper were generated using the bzip2 
compressor.  

We enhanced the NCD to address the fact that some of the data 
in the ATG are scalar quantities rather than vectors representing 
time-series of measurements. Although the NCD is effective in 
comparing strings of symbolic or numeric values, it is not so for 
vector, or non-time-series data To remedy this, we use the 
Normalized Euclidean Distance (NED), defined and shown to be a 
metric [13]. The NED is a more useful approximation to the NID 
when comparing vector values for our work. With this in mind, we 
propose the following hybrid distance measure. Given two inputs, 
we examine their format, and compute the NED for vector 
quantities, and the NCD for others. We term this measure the 
Normalized Adaptive Information Distance (NAID), defined as 

 ( , ) if ,  are not time-series & dim( ) dim( );
( , )

( , ) otherwise,
NED x y x y x y

NAID x y
NCD x y

 (4a) 

where:  

 
/( )when 0 0;

( , )
0     otherwise,

x y x y x or y
NED x y  (4b)  (4b) 

where x  denotes the 2L  norm of vector x . The NAID  measure 
is used throughout our work. 
2.2 The Gap Statistic and Spectral Clustering 
We propose clustering as a means for unsupervised analysis of the 
ATG, using the NAID described above as the tool for measuring 
distances. Specifically, the spectral clustering algorithm by Ng et 
al. [14] was chosen for its simplicity and robust performance, 
although other methods could have been used. Tibshirani  et al. 
[15], proposed the gap statistic as an effective tool for 
automatically estimating the number of clusters in data. It 
compares the clustering of the data to an ensemble of clustering 
results of random data generated by a uniform distribution. 
Specifically, given the distances between points in cluster Cr : 

 .,
,

D di jr i j Cr
 (5) 

We define kW as the intra-cluster distance summed across 
all k clusters where rn is the number of points in cluster r : 

 1 .
21

k
W Dk rnrr

 (6) 

The gap statistic can now be calculated as: 

 )log()log(1)(
1

k

B

b
kb WW

B
kGap . (7) 

     Here kbW  is calculated as in eqn. (6) for each of the B 
randomly generated uniformly-distributed datasets. Given the 
standard deviation k  of our B  randomly generated data sets, we 
define ks  that accounts for the simulation error: 

 Bs kk
11 . (8) 

     Finally, we choose k as the smallest value of k for which 
 1)1()( kskGapkGap . (9) 

     When the data is not clearly separated, the gap plot exhibits 
multiple local maxima. We found that adaptive quantization 
reduces the appearance of local maxima by eliminating spurious 
similarities between continuous-valued time series data points. 
2.3 The Gap statistic is an estimate of randomness deficiency 
Randomness deficiency is a concept from algorithmic statistics [4-
6] that measures how well a model captures the meaningful 
information in a specific digital object. When it is close to 0, the 
model has captured all regularities, or meaningful information, in 
the data and the data can be considered “typical” for the model. 

As noted by Vitanyi, when using a finite set to model our 
data, there should be “no simple special properties” [6] that 
differentiate our data from any of the elements of the set. Consider 
the case where the clustering has captured all regularities, or 
meaningful information, in the data.  All data in the cluster are 
equally well represented by the cluster centroid. Any differences 
between data in the same cluster, or between data and the cluster 
centroid would by definition be purely random. Since our 
clustering is based on an algorithmic information theoretic distance 
measure, rather than a measure such as the Euclidean, we cannot 
compute the centroid of the points in a cluster. Instead, a 
“representative point” *x within the cluster is chosen. In principle, 
any point within the cluster can be used as the representative since 
the differences between the points of a cluster are known to be 
purely random. By the symmetry of algorithmic information  [3], 

 cyxKyKxyKxK )|()()|()( , (10) 

any point within the cluster can be chosen as *x . Points that 
belong to that cluster are then specified using a program of length 

*( | )K x x  bits to compute *x  from x . The two-part code for a 

clustering model can now be defined as * *( ) ( | ).K x K x x  Now, 
we can write the data to model code for an object d  for which the 
clustering model M  has captured all regular information as:  

 )|()()|( ** xdKxKMdKDM . (11) 

For the two-part code, points x  and *x  are in the same 
cluster, so there can be no simple special properties that 
differentiate any of the objects in the cluster,  

 rjiijji CxxxxKxxK ,)|()|( .  (12) 
This allows us to rewrite eqn. (2) as follows: 

 
)(
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Now the randomness deficiency for a clustering model is 
 )|(*)|()( *xxKxdKx . (14) 

Substituting eqn. (13): 
 )(),NID()(),NID()( **** xKxxxKxdx . (15) 

Recalling that kW  is the intra-cluster NID, we substitute )(dWk , 
the randomly generated uniformly distributed data intra-cluster 
NID for the first term, and )(xWk , the intra-cluster NID for our 
data for the second term, 

 )()()( xWdWx kk . (16) 
Comparing eqns. (16) and (7) we see that the gap statistic and 

the randomness deficiency are identical except for the logarithms 
of the two terms. The logarithms in eqn. (7) can be interpreted as  
expressing a conventional distance measure (e.g. Euclidean) as a 
number of bits. When using the gap statistic with an NID based 
distance measure, the formulation in eqn. (16) should be used.  
2.4 Quantization and the NCD 
For numeric time series, the performance of the NCD can be 
improved using quantization as a preprocessing step. Numeric time 
series data can be quantized to a given precision by histogramming 
the data [16]. Similar numeric values are assigned to the same 
histogram bin, and a representative value for that bin is used to 
represent all numeric values assigned to it.  Placing the bins in the 
histogram such that each bin contains an equal number of data 
points maximizes the entropy of the quantization. In the SAX 
approach [17] and in [16] the data is assumed to have a normal 
distribution. Their implementation is limited by their use of a 
lookup table that defines the locations of a maximum of 10 bins, 
and one dimension. We propose a method that allows quantization 
of data of any dimension, to any number of symbols. If  

][ 1 pxxx  is a p-dimensional normally distributed random 
variable with mean  and covariance , then the equiprobable 
regions of x  are ellipsoids  [18]. First, define the quadratic form 

 )()()( 1 xxxQ T , (17) 
where )(xQ  is a chi-squared distributed random variable with p 
degrees of freedom [18]. The hyper-ellipsoid 

 ),1()( 2 pxQ , (18) 
where )(xQ  is given by eqn. (17),  is the boundary of the %100  
confidence ellipse. The breakpoints, or boundary points separating 
symbols, are linearly spaced on the interval [0,1]. A symbol is 
assigned to x  based on the region of the chi-squared inverse CDF 
that )(xQ  falls into.  

3. EXPERIMENTAL RESULTS 
A single implementation, as described in section 2, has been used 
to produce summaries of image sequence data from cell and tissue 
biology. Results are presented here for three diverse applications. 
     Our method proceeds as follows. Starting with input image 
sequences (figure1, panel a), object extraction and tracking 
algorithms are run, generating time courses of object feature values 
(figure1, panel b).  For each feature subset and number of 
quantization levels, a pairwise NAID matrix is generated (figure1, 
panel c). Feature subset selection can be done by exhaustively 
searching the feature space, or by using an implicit search method 
such as the floating search method [19]. The feature subset and 
number of quantization levels that maximize the gap statistic are 
chosen. The corresponding list of cluster assignments, along with 
the feature subset constitute our summary (figure1, panel d). 
       In [9], Al Kofahi et al. presented a method for automatic 

tracking and lineage tree construction from these image sequences. 
Neural progenitor cells differentiate into either glial cells or 
neurons in vitro. Currently, definitive classification of neurons 
versus glial and progenitor cells requires staining the culture for 
the molecule -tubulin III that selectively labels neurons. The 
staining process is fatal to cells in the culture, so can only be done 
after the image sequence recording is complete. Our summary 
automatically differentiated neurons from progenitor cells. 

The second application involves a dual-mode phase and 
fluorescence time-lapse image sequence showing a live neuron and 
a fluorescently labeled kinesin protein believed to play a role in 
axonal specification, the process whereby one of a developing 
cell’s neurites is chosen by the cell as the axon [20]. The data for 
this analysis was based on nine cell cultures. Since this image data 
contains more than one channel of information, and the fact that 
the associations between information in channels is of considerable 
scientific interest in its own right, we add features to the ATG that 
quantify associations. Specifically, at each time slice, we find the 
percentage of the kinesin protein closest to distal (growing) end of 
each neurite. This associative feature was then included in the 
same summarization analysis along with all other features. The 
resulting summary found two groups in the data, one consisting 
exclusively of neurons which had undergone axonal specification, 
the second consisting exclusively of neurons which had not 
undergone axonal specification. 

In [21], Chen et. al. describe a method for segmenting and 
tracking thymocytes. A heterogeneous population including P14 
positive type and wild type thymocyte were imaged using a two-
photon two-channel laser-scanning microscope. The ten datasets 
consisted of data on over 400 cells. Each dataset was treated as an 
object (e.g. each movie was one object), and included the time 
course of features from all t-cells from that dataset. Feature subset 
selection on the seven dimensional feature space identified cell 
volume as the feature which maximized the gap statistic. The 
resulting summary found two groups in the data. Each group 
corresponded exclusively to wild type or P14 type thymocyte cells. 

Figure 1 shows a sample image from each application, along 
with the ATG colored according to the summary results. 

4. CONCLUSIONS AND DISCUSSION 
Our work demonstrates the practicality of using concepts from 
algorithmic information theory to summarize changes within and 
across image sequences in a manner that is theoretically optimal, 
and very powerful and straightforward in implementation. The 
generality of our methodology is an attractive feature for 
summarizing changes in individual image sequences, as well as 
changes across multiple image sequences. 
     The three different application domains that we considered are 
actual problems of interest, but have in the past been treated with 
separate algorithm development efforts. Analyzing the lifespan and 
reproduction of neural progenitor cells generated a summary which 
separated neurons from glial and progenitor cells, a task which 
typically requires a toxic fixative stain. Analyzing the association 
between a cells’ neurites and a kinesin protein enabled the 
automatic identification of cells which had undergone axonal 
specification. Wild type and genetically modified thymocytes were 
automatically separated by the time course of cell volume. All of 
these applications were analyzed using a single implementation. 
Importantly, results that were meaningful in the information-
theoretic sense also proved to be biologically meaningful. Given 
the inherent generality of our approach, we are confident of 
broader applications. 
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Figure 1. Sample images and ATG’s colored with summary results for the three application domains analyzed for this paper. 
Analyzing neural progenitor cells; (a) one image from input sequence, (b) object time course data, (c) NAID matrix obtained from 
pairwise comparison of object time course data, (d) summary resulting from gap spectral clustering of the NAID matrix showing 
neurons (red) differentiated from progenitor cells (blue), an accomplishment which until now has required the use of a toxic 
fixative stain. Analysis of thymocytes cells (e ) found volume to be a differentiating feature for wild type (blue) and generally 
modified (green) cells. The association of a kinesin proton with developing neurites (f) led to a summary which identified cells 
which had undergone axonal specification.  
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